Пиротехническая химия
Главная Начинающим пиротехникам Статьи Добавить статью Добавить материалы на сайт Поиск по сайту Карта книг Карта сайта
Книги в помощь
Военная история Изготовление и применение ВВ Пиротехника в военном деле Разное по пиротехнике Физика в пиротехнике Химия ВВ и составов
Новые книги
Суворов С. "Бронированная машина пехоты БМП -3 часть 1" (Военное дело)

Яковлев Г.П. "122 мм самоходная пушка образца 1944 г." (Военное дело)

Суарес Г. "Тактическое преимущество " (Военное дело)

Стодеревский И.Ю. "Автобиография записки офицера спецназа ГРУ " (Военное дело)

Семиколенков Н.П. "стрельба из танковых пулеметов " (Военное дело)
Физика взрыва. Т.2 - Орленко Л.П.
Орленко Л.П. Физика взрыва. Т.2. Под редакцией Орленко Л.П. — M.: ФИЗМАТЛИТ, 2002. — 654 c.
ISBN 5-9221-0220-6
Скачать (прямая ссылка): orlfizvzrvt22002.djvu
Предыдущая << 1 .. 110 111 112 113 114 115 < 116 > 117 118 119 120 121 122 .. 309 >> Следующая


При определении глубины пробития ударников, имеющих скорость в пределах 5,0-1,5 км/с, использование гидродинамической модели проникания, в которой глубина пробиваемого в преграде канала зависит только от длины ударника и

264

If. Кумуляция

соотношения плотностей материалов ударника и преграды, неприемлемо, т.к. дает завышенные результаты по пробитию. Поэтому использована известная модификация гидродинамической теории, приближенно учитывающая прочностные свойства материалов ударника и преграды [17.29, 17.30]. Для этого в уравнение течения, описывающее ударное взаимодействие, вводятся дополнительные компоненты, усреднено учитывающие особенности упругопластического течения. В этом случае интеграл Бернулли, записанный для поверхности контакта между проникающим ударником и преградой, дает

где Pt,Pj — плотность материала преграды и струи; Yry Yj — динамические пределы текучести материалов преграды и струи, определяемые опытным путем или после решения соответствующей динамической упругопластнческой задачи; uXi — скорость проникания элемента струи.

Для определения скорости проникания элемента КС в преграду из уравнения Бернулли получаем соотношения:

и**--rrfi ~. * Vw' ^--(уг-^)(і-/ф

Дальнейший расчет глубины проникания элементов струи можно осуществить одним из двух способов: с учетом и без учета торможения несработавшейся в преграде части кумулятивной струи. При этом установлено, что для зарядов с облицовками высокого прогиба, формирующих относительно более скоростные щ градиентные KG, лучшее соответствие с экспериментальными данными получается в случае, когда эффект торможения элементов в преграде не учитывается, а для зарядов с низкими сегментными облицовками, из которых формируются ПЭ, наоборот, лучшее соответствие достигается при вычислениях с учетом торможения еще несработавшейся (или остаточной) части ударника в преграде.

Без учета торможения глубина проникания г-го элемента струи в преграду, как и ранее, определяется соотношением Li — 1%иХ\ЦУл — их%), а с учетом торможения еще не «сработавшейся» части элемента струи в преграде, глубина проникания рассчитывается следующим образом.

Рассмотрим движение произвольного г-го элемента струи непосредственно перед моментом встречи с преградой, когда его скорость Vj\ еще больше скорости Vлагх следующего за ним (г-Ы)-го элемента. В результате контактного взаимодействия с преградой, текущая скорость движения г-го элемента струи постепенно снижается, и может возникнуть ситуация, когда часть этого элемента еще не сработалась, а его уже догнал следующий за иим элемент, т.е. Vji = Vji+ь Длину этого остатка 1[, можно определить следующим выражением [17.29]

vji+i + ^JvJi+1 + gy

X ёхр

f wj (ул+1 yfow +gy- pv*m - ул y/vjj + gy + wj)

X

(17.86)

Впоследствии эта длина несработавшегося фрагмента текущего элемента добавляется к длине следующего за ним (г + 1)-го элемента струи, которая становится

17.5. Расчет функционирования кумулятивных зарядов

равной (Ji+i + ^i)' см- Рис- 17.64. В рамках рассмотренной схемы взаимодействия, глубина проникания г-го элемента в преграду Li вычисляется путем численного интегрирования соотношения

Vj1

Li=g j Uxi {Vj% (Vj)dVj>

(17.87)

где переменной интегрирования является текущая ^^рость несработавшейся части внедряющегося элемента струи, а функциональная зависимость длины остатка от скорости струи l\ (Vj) определяется выражением (17.86) при K/t+i = Vj.

При условии pj — рт у зависимости для расчета скорости проникания и длины несработавпгегося фрагмента г-го элемента струи упрощаются:

Vjj Yt-Yj^ l\ = 2 prVji 1 k

X exp

-Pt {Vl - Vl+1) 1

4Y,

Из приведенных зависимостей видно, что глубина внедрения ударника (элемента КС или ПЭ) зависит от двух параметров, характеризующих прочностные свойства материалов преграды и ударника, а именно напряжений Yt и Yj1 при которых обе среды можно рассматривать как жидкости. Эти величины обычно определяются экспериментально, причем, в силу инерции окружающего ударник материала преграды, следует ожидать, что Yt больше Yj в случае, когда они состоят из одного и того же материала. Например, если этим материалом является мягкая сталь, то Yt/Yj 3,5. Диаметр кратера, образующийся при проникании элемента КС, опре-

fJi+\

¦





, J ,

















т '^1 ш
h


условия равенства кинетической энергии ударни- ннкзяия KQ с учетом торможения ка удельной работе деформирования материала несработавшейся части; 1 — участок Преграды. падения скорости несработавшейся

ИЗВЄСТН0, ЧТО глубина пробиваемого КС В - части г-го элемента струи преграде канала максимальна на определенном

(оптимальном) «фокусном» расстоянии от заряда до преграды. При отклонениях расположения заряда от своего оптимального значения, как в сторону уменьшения, так и в сторону увеличения, глубина пробиваемого канала падает. Уменьшение глубины пробития при действий заряда с расстояний, больших фокусного, в данной методике учитывается с помощью поправочного коэффициента kpi, связанного со степенью разорванности струи, L\ = H^iLi- Последний вычисляется С помощью показателя степени разорванности Ai, определяемого как отношение длины элемента струи, которую он имел бы при растяжении без разрушения на отдельные части, к предельной длине элемента: А* = (1 4* РіЄхоі/Ул)/пьі. Тогда
Предыдущая << 1 .. 110 111 112 113 114 115 < 116 > 117 118 119 120 121 122 .. 309 >> Следующая
Реклама
 
 
Авторские права © 2010 PiroChem. Все права защищены.